- Education is the only discipline in which it's acceptable to substitute an arbitrary value when data is incomplete, as illustrated by the practice of assigning a score of zero to assessments that are not submitted. This erroneously assumes that if we fail to measure something it doesn't exist. It would be more honest to admit we simply don't know about things for which we lack data. This presentation will explore some strategies to make more defensible decisions in the face of incomplete data, including simple methods to perform regressions that handle gaps in the data in a defensible way.

THE ABSENCE OF PROOF

 Is not the proof of absence.

ANOTHER WAY TO THINK ABOUT ZEROS...

The Atheist: "I can't prove that God exists, therefore, there is no god."

The Agnostic: "I can't prove that God exists, therefore, I don't know."

POP QUIZ: WHAT TYPE OF SCALE DOES THE CELSIUS

 SYSTEM USE?Relative or Absolute

POP QUIZ: WHAT TYPE OF SCALE DOES THE KELVIN

 SYSTEM USE?Relative or Absolute

IS YOUR GRADING SCALE ABSOLUTE OR RELATIVE?

The Case Against the Zero

Even those who subscribe to the "punishment" theory of grading might want to reconsider the way they use zeros, Mr. Reeves suggests.

SIGNAL AND NOISE

True score

- A.K.A. Construct Relevant Variance

Error score

-A.K.A. Construct Irrelevant Variance

A VIEW WITH OMNISCIENCE - IS GROWTH LINEAR?

Typing Speed vs. Exam Number

FIXES FOR PROBLEMS OF PRECISION

The law of large numbers regression to the mean

Did you know that the most intelligent women tend to marry men who are less intelligent than they are?

REALLY SIMPLE REGRESSION - AVERAGING

Typing Speed vs. Exam Number

SLIGHTLY BETTER REGRESSION - LINEAR

Typing Speed vs. Exam Number

BETTER REGRESSION - POLYNOMIAL

HOW TO SETUP A GRADEBOOK

- Graphs
- LINEST function
- Various Regressions
- Linear
- Polynomial
- Log*
> Power*
- Only appropri repeated measures of the same fhing
- The formulas in the hidden rows assign X and Y values of zero to assessments not taken.
- This tends to have a minimal effect on predicted score, because Y intercept values tend to be small
- Can be avoided all together with sorting

- Columns O and P are normally hidden.
- The LINEST function is in cell O3 (shown in blue)
- Row 3 (C3:N3) represents the order in which the measurements were taken
- Note that Test 2 and Test 3 have x and y values of zero.
- Row 4 (C4:N4) represents the scores on the tests.
- Note the labels m and b in cells 33 (blue) and P3 (green)
- You might recall from high school algebra: $y=m x+b$
- Where:
- Y is the predicted score after some number of practices x
- X is the number of practices
- B is the y intercept. (essentially native ability that was present before training started)
- The score on the next test (test13) can be predicted by plugging 13 in for x :
- $Y=1.89(13)+0.17=$ approximately 19

PEARSON'S CORRELATION COEFFICIENT

- Pearson's Correlation Coefficient is highlighted in yellow
- It describes how well the regression correlates to the actual data
- A value of 1 is perfect, and higher is better.
- Pearson's correlation is an objective way to compare different regressions
- Note that Joe's progress is linear than Neugie's, based on the higher Pearson Correlafión Coefficient

A WORD OF CAUTION...

- Linear and Quadratic regressions assume that ability will continue to grow without limit
- The real learning curve is sigmoid shaped
- Linear regression makes reasonable predictions in the short run, but is not appropriate for longer term predictions

Typing Speed vs. Exam Number

PEARSON'S CORRELATION COEFFICIENT

- Pearson's Correlation Coefficient is highlighted in yellow
- It describes how well the regression correlates to the actual data
- A value of 1 is perfect, and higher is better.
- Pearson's correlation is an objective way to compare different regressions
- Note that Joe's progress is linear than Neugie's, based on the higher Pearson Correlafión Coefficient

QUADRATIC (POLYNOMIAL DEGREE 2) REGRESSION

- You may recall from high school the quadratic equation:
- $Y=a x^{\wedge} 2+b x+c$
- Coefficient a (in orange)
- Coefficient b (in blue)
- Constant c (in green)
- $Y=.084(13 \wedge 2)+1.08(13)+1.13$
- For both Neugie and Joe, the Quadratic regression correlates better
- This implies that their growth is still accelerating

POLYNOMIAL REGRESSION (3RD ORDER)

- You may recall from high school the quadratic equation:
- $Y=a x^{\wedge} 3+b x^{\wedge} 2+c x+d$
- Coefficient a (in red)
- Coefficient b (in orange)
- Coefficient c (in blue)
$>Y=.026(13 \wedge 3)-.29(13 \wedge 2)+2.44(13)$
- Joe's correlation is very strong

Low noise

HOW FAR COULD YOU GO?

- At some point you're just fitting noise

SUMMARY

- Don't make up data in its absence
- Consider equal increment scales like 1-5, rather than A-F
- You're as good as your next test
- Simple regressions, like averaging, arrest noise but they also lose the signal
- The Excel LINEST function offers a defensible way to deal with incomplete data

