Sketchbox for Building Energy Modeling

WTEA 8:45 am Friday, Mar 10

James Reichling, MMSD and CREATE Dave Vigliotta, Slipstream Connor Jansen, Slipstream

James Reichling

Physics and math teacher, Madison Metro School District

Dave Vigliotta Director of Partnership Development, Slipstream

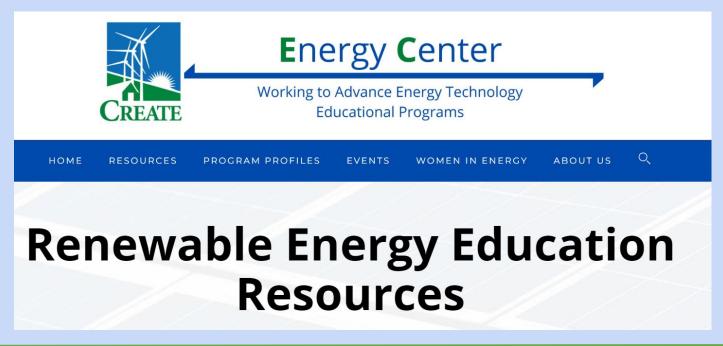
Connor Jansen, PE, LEED AP Technical Director, Slipstream

slipstream

Accelerating climate solutions. For everyone.

We deliver research, technical assistance, financing, education and training, and programs for stakeholders.

www.slipstreaminc.org


James Reichling Physics and math teacher, engineering background

Madison Metropolitan School District

Introduction to Renewable Energy course (dual credit with Madison College)

Energy Management and Energy Economics

CREATE Center for Renewable Energy Advanced Technological Education <u>https://createenergy.org/resources/</u>

Presentation Outline Overview of building energy modeling and sketchbox

Sample lessons, course context and standards

Student reactions from class trials

Access and support

Q&A and feedback survey

Energy use in buildings

US EIA reports buildings account for 39% in 2021

Example strategies to save energy, reduce cost

- upgrade lighting
- scheduling and set points
- update mechanical systems
- building envelope improvements

Energy modeling helps make decisions about which strategies provide the greatest return on investment

US DOE provides DOE2 Building Energy Use and Cost Analysis Software

DOE provides E-Quest as a user interface

Download and install required, learning curve

Sketchbox by Slipstream as a teaching tool

Online user interface to DOE2

Free to use, no download required

Runs on a student chromebook

Preloaded building types, systems/technologies, weather data, utility rates, and many more data

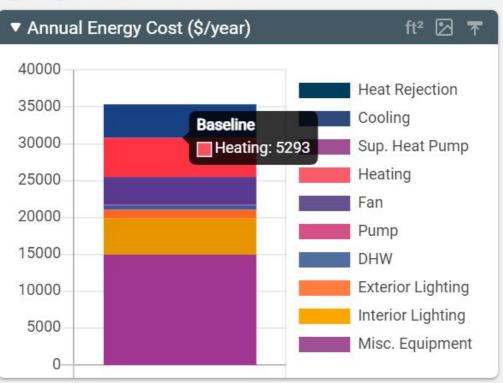
Why teach this to students?

Awareness of resource utilization

Cost-benefit analysis and business connections

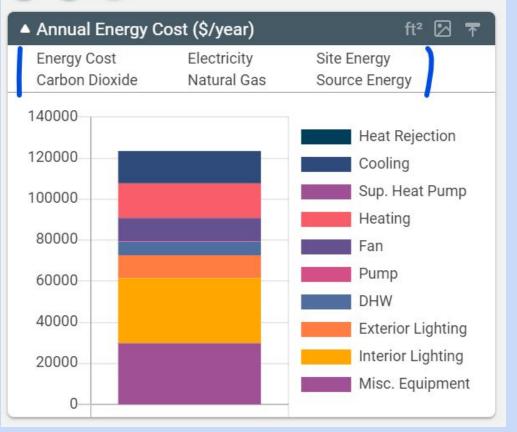
Energy DPI Pathway

Get students motivated/excited about climate solutions

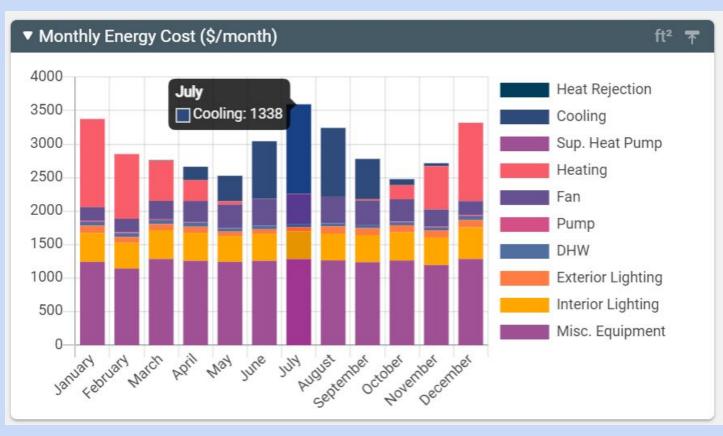

Careers: Building manager, energy engineering,

Default Project Settings

PROJECT DESIGN SCHEDULES BASELINE MEASURES RESULTS


General	Financial		Emissions	
Project Name	Rate Category		Energy Sour	ce to Site Ratio
My Project	Commercial	~	Electricity	Natural Gas
Project Environment	Cost of Electricity	y	2.8	1.05
Basic	0.09	\$/kWh	CO ₂ Equivale	ence for Electricity
State	Cost of Natural G	as	0.371	kg of CO ₂ e/kWh
Illinois	0.693	\$/therm	CO ₂ Equivale	ence for Natural Gas
Nearest City			5.3	kg of CO2e/therm
Chicago				
Energy Code				
IECC 2018				

PROJECT DESIGN SCHEDULES BASELINE MEASURES RESULTS


Energy Cost by Utilization

🖹 🔻 🗊

Other display options

Monthly breakdown

Annual Summary

Peak Cooling	Peak Heating	Peak Electric Demand	Annual Electric Consumption	Annual Natural Gas Consumption (therm)	Annual Energy Cost
(kBTU/hr)	(kBTU/hr)	(kW)	(kWh)		(\$)
878.1	751.8	127.9	326919	8539	35339

Students can change parameters to explore impact on energy utilization and cost

Building type (e.g. school, commercial)

Location

Window Fraction

Spatial Orientation

Energy Code

Lessons in development

Lesson 1 introduction to get students started quickly

Studies impact of size, location, window percentage

Demonstrates basic functions and model results

Lessons in development

Lesson 2 Energy code options (IECC and ASHRAE)

Measures sets, pre-built building upgrades to compare baseline (code), "better" and "best" (practical) options

16 upgrade categories including roof insulation, interior lighting, wall R-value, window properties, air-sealing, DHW

Lesson One Instructions

Change building type to school or university

Building Type School/University \sim Parent Shell Adjacency None Not Used Aspect Ratio Area ft² 150000 Floors Number Height 2 13 ft Perimeter Zone Depth ft 15 Roof Type Insulation entirely above deck \vee Wall Type Metal framed V Glazing Type **Fixed fenestration** \sim

Window	-to-Wall Ra	atio (%)	
North	South	East	West
22	22	22	22
Skylight	Туре		
Plastic	Curb		\sim
Skylight-	to-Roof R	atio	
0			%
Heating	Fuel Type		
Natural	Gas		~
Air-Side	System		
Packag	ed VAV wi	th HW Rel	heat 🗸
Cooling	System		
Direct E	xpansion		
Heating	System		
Boiler			
Dedicate	ed Outdoo	r Air Syste	em
None			~

Design Tab Options

Lesson One Scenarios

Change building size

Change window percentage

Change location (to Los Angeles)

Participant discussion - what change in energy use and cost will each change create? Increase/decrease, by what percent?

Electricity, Natural Gas, Overall Cost

- 1. Cut building square footage in half
- 2. Double window percentage

3. Change location (Chicago to Los Angeles)

Participant discussion - RESULTS

Scenario	Electricity (MWh)	Natural Gas Therms	Total Cost Dollars
Baseline	1031	34,300	116,600
Half area (75,000 ft ²)	513	18,400	58,900
Double window area	1070	35,000	120,000
Move to LA	1060	9750	167,900

Lesson Two Scenarios

Change energy code

Change building components and construction, selected measures

Participant discussion

1. Change from IECC 2018 to IECC 2015 Change in energy cost? Increase/decrease, percent

 Four measures, rank in by largest energy cost reduction Upgrade roof insulation
 Efficient Interior Lighting
 Upgrade window solar heat gain coefficient
 Upgrade Cooling Equipment Participant discussion

1. Change from IECC 2018 to IECC 2015Change in energy cost? Increase/decrease, percent2018: \$116,6002015: \$123,400

2. Four measures, rank in by largest energy cost reduction Upgrade roof insulation: \$326
Efficient Interior Lighting: \$12,293
Improved glazing solar heat gain coefficient: \$411
Upgrade Cooling Equipment: \$3531

Energy Cost Savings (\$/year) ft² 🖸 🔭 Upgrade Roof Insulation Upgrade Wall Insulation Air Sealing Improve Glazing U-Value Improve Glazing SHGC Efficient Interior Lighting Interior Lighting Task Tuning Interior Lighting Occupancy Controls Efficient Exterior Lighting Exterior Lighting Controls Miscellaneous Equipment Power Upgrade Cooling Equipment Upgrade Heating Equipment Demand Control Ventilation Low Flow Plumbing Fixtures Upgrade DHW Heater 2000 4000 6000 8000 10000 12000 14000 0

Future lessons in development

Will be available from CREATE website

Lessons being developed by other educators

Student reactions from class trials

High level of engagement

Easy access to results

Desire to independently explore

Students in pilot asking to participate in another round

What did students find most interesting about sketchbox?

"... how small factors can change so many things. I also found predicting them fun."

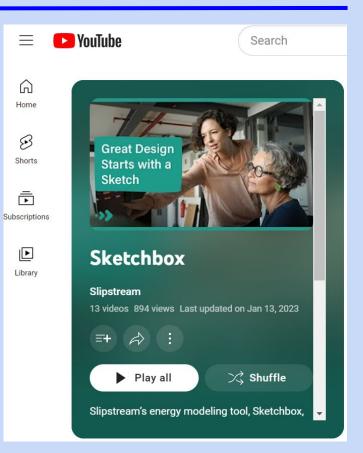
"How this ties into architecture and buildings"

"How [the building in] California uses less energy but costs more"

"How small changes in building design can greatly influence energy cost" Access to Sketchbox: https://slipstreaminc.org/sketchbox

Login: https://www.sketchbox.io/login

Welcome to Sketchbox!


mail		
assword		
	Sign In	
	Create an account	
	Forgot your password?	

Sketchbox Support

Youtube tutorials at the sketchbox youtube channel

Support: tools@slipstreaminc.org

General building science resources and connection to Smart Start materials through CREATE

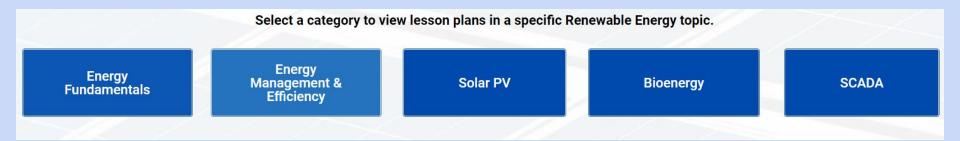
Join us for a virtual workshop to learn how to use Sketchbox in *your* classroom!

Professional development opportunity hosted by KEEP and Slipstream

Date/time: July 20, 2023 (9am - 3pm)

Participants who attend the full workshop are eligible to receive a \$250 stipend upon completing and submitting an assignment that will be uploaded to DPI WiseLearn.

For more detail and to register scan QR code above, or please visit: https://cnroutreached.asapconnected.com/#CourseID=283657 DPI Regional Career maps https://dpi.wi.gov/sites/default/files/imce/pathways-wisconsin/ 2022_11_14_Final_Energy_Career_Pathway_11.14.22.pdf


Energy Generation & Conservation

Energy Transmission, Distribution, & Storage

Training levels: H.S. Diploma, Certification or Technical Diploma, Registered Apprenticeship, Associates Degree, Bachelor's Degree and beyond

General building science resources and connection to Smart Start materials through CREATE

Teaching Materials, Energy Fundamentals

Energy Career Maps through CREATE

https://createenergy.org/resources/

SOLAR TOOLKIT

TEACHING MATERIALS CAREER MAPS

PUBLICATIONS

Exploring A Job In The Energy Industry

Exploring A Job In The Energy Industry encourages students to explore a potential, future energy job. Using Career Maps, students research compensation, qualifications, job demands, and advancement opportunities for the job they selected.

Renewable Energy Career Maps

- Solar
- Climate Control
- Bioenergy
- Wind
- Green Buildings

8 video profiles

https://slipstreaminc.org/cleanenergycareers

Q&A and feedback forms

End of presentation