Mark Pugh

Prairie River Middle School 106 Polk St. Merrill, WI 54452 715-536-9593 ex.324 mark.pugh@prms.maps.k12.wi.us

Special Recognition to: **Brian Schiltz** – Student Teacher, UW-Stout, for the instruction sheet.

Supplies for the light box

(Total cost is less than \$1.00 per box)

Fiber optic strands:

ABS
PO Box 408
Pittsburg, KS 66762
www.absupplies.com

Catalog # B-700186 - \$2.00 for ½"x18" piece (about 100 or so strands)

9v battery clip, 9v battery lead & sliding switch:

Kelvin 280 Adams Blvd. Farmingdale, NY 11735 www.kelvin.com

Catalog # 220013 - 9v battery clip - \$.15 ea #27004 - SPST slide switch - \$.40 ea. #220017 - I shape 9v battery snap lead - \$.10 ea.

Lights and wire:

Free – Old Christmas tree lights. Just ask for donations.

General Supplies:

Cardboard boxes cut into 2 ½" strips
Latex paint
A few straws borrowed from the cafeteria (~1/4" dia.)

Masking tape
Empty soda cans (2)
6" x 6" hardboard

Tools needed:

Hot glue gun
Drill or drill press
Try square
Xacto knife
Scissors
Hole punch
Sharpie pen
3/8" hole punch

LIGHT BOX

Objective: Construct a fiber optic box by using a parallel circuit.

Supplies: 1- 9volt battery with clip and leads, 1- 2-way switch,

2- lights, 2- soda pop cans (preferably diet and the same brand), extra wire, 1-6" x 6" x 1/4" thick hardboard, cardboard, straws,

fiber optic wire.

Instructions:

Lecture

1. What is electricity? What is the atom and electron? How does the electron travel? (Insulators, Conductors, Current, Open, Closed and Short Circuits.) What if nothing works? Troubleshoot & Problem Solve

2. What is the difference between a series circuit and parallel circuit? Draw diagrams of both using proper labels and symbols.

Activity

- 1. Obtain a piece of hardboard that is 6" x 6" and locate the center. An "A" size bit is used to drill hole (depends on straw diameter). This is where the fiber optics will come through. (Fig. 1)
- 2. Lay a marker on top of a 3/4" piece of stock and mark a line across the bottom of one soda can. Do the same thing with the other can; however, use a 1-1/2" (2x4) to mark the second can.
- 3. Cut both the cans off on the marked line (scissors work fine). On the shortest can, punch a 3/8" hole dead center on bottom. On the taller can punch two holes, one across from the other, using a paper punch. Using a razor blade, make 1/4" slices 90° apart in each of the taller can's holes. (Fig. 4)
- 4. Glue the shortest can to the center of the hardboard. Then glue the battery clip 1/2" away from the can (Fig. 3)
- 5. Cut your cardboard strips for the box. The height of the pieces should be 2-1/2". On one of the pieces cut a 1" x 5/8" hole for the switch. Use a hot glue gun to mount cardboard sides. The corners need to be glued also. Masking tape can also be used to cover the corners. Allow to dry. (Paint with 2 coats of latex paint. Be creative).
- 6. While paint is drying create a parallel circuit using two light bulbs, a switch, a lead, and a battery. Assemble the circuit into the box when paint is dry. (Fig.4)
- 7. Cut straw to 1" length. Cut 20 fiber optic strands into varying lengths and stuff into straw until fibers are tight in straw. Put a small bead of hot glue around fiber optics at top of the straw. (Fig. 5)

Fig. 5

Fig. 4

Name		
Hour_	 	

Light Box Evaluation

	1. Layout accurate (measurements).
	2. Holes drilled/punched accurately.
	3. 90° corners on box.
	4. Wired correctly (parallel circuit).
	5. Switch works properly.
	6. Fiber optics mounted securely.
	7. Fiber optics work properly.
	8. Nicely painted and finished.
Letter	or % grade for this project

Key:
$$\sqrt{=\text{Good}}$$

 $\sim = \text{So-So}$
 $0 = \text{Not so hot}$

Light Box

